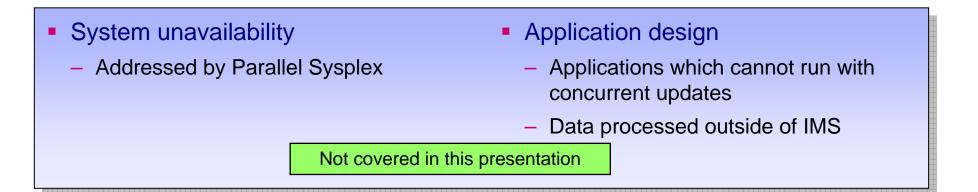


Maximizing IMS Database Availability

Rich Lewis IBM

August 3, 2010 Session 7853


Agenda

- Why are databases unavailable
 - We will discuss the reasons

- What can we do about it
 - We will see how we can eliminate or minimize these outages

Why are IMS databases unavailable?

- Reorganizations
 - For database performance
 - For database restructure
- Application design
 - Applications copy data; data updates must be quiesced

- Database recoveries
 - Preparation
 - Image copies
 - Disaster recovery preparation
 - Recovery execution
 - Full recoveries
 - Timestamp recoveries

We'll talk about these reasons and how to minimize these database outages

Reorganizations

Reorganizations

For database performance – typical reorg

- "Optimizes" data placement in data sets
 - Puts segments near segments from which they are chained
- Reduces I/Os required to process the database
 - Reduces CPU utilization
- For database restructure less typical reorg
 - Adds, deletes, moves segment types in the database
 - Modifies segment definitions
 - Changes physical characteristics
 - Block sizes
 - Randomization parameters
 - Compression

• • • •

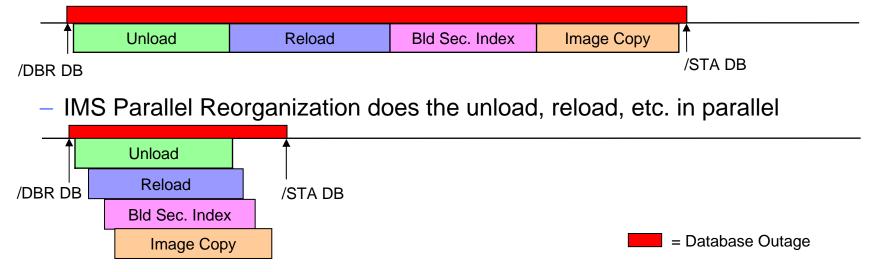
TEM

Reorganizations

- Three categories of reorganizations
 - Offline
 - Database is not available during the reorganization
 - Online almost
 - Database is available during almost all of the reorganization
 - Short outage required
 - Online truly
 - Database is available during all of the reorganization
 - Absolutely no outage whatsoever

Offline

Database is not available during the reorganization


Full Function (non-HALDB) Offline Reorganizations

- HD Unload, HD Reload, HISAM Unload, HISAM Reload, Prereorganization, Database Scan, Prefix Resolution, and Prefix Update
 - These utilities are supplied in the IMS product
 - They perform the reorganization functions
 - Unload, reload, update logical relationships, rebuild secondary indexes
 - They are not designed for optimum performance
 - Databases are unavailable during the reorganization process
 - These utilities may be tuned for better performance
 - More database buffers
 - More unload/reload data set and work file buffers

Full Function (non-HALDB) Offline Reorganizations

- IMS Tools: HP Unload, HP Load, Index Builder, HP Prefix Resolution, and IMS Parallel Reorganization (Renamed: IMS Database Reorganization Expert)
- These tools are not part of the IMS product
 - They shorten the reorganization process
 - They simplify the management of reorganizations
 - HP Unload, HP Load, Index Builder, HP Prefix Resolution are "high speed" replacements for standard utilities

TEM

HALDB Offline Reorganizations

- HALDB has advantages for offline reorganizations
 - Parallelism
 - Partitions may be reorganized in parallel
 - Smaller partitions provide shorter elapsed times
 - Elimination of much of the work
 - Secondary indexes and logical relationships do not have to be updated during the reorganization
 - They are dynamically updated when they are first used
 - Self-healing pointers
 - A subset of the partitions may be reorganized
 - Only those that are disorganized
 - Performance
 - Much shorter outages for reorganizations
 - Could reduce the elapsed time by 90% or 95%!

HALDB Offline Reorganizations

Non-HALDB reorganization

Unload

Unload	Reload	Resolve Log. Rel.	Rebuild Sec. Ind.	Image Copy
HALDB reorganization	n			
 Entire database 				


Reload

Image Copy

• Reorganize partitions in parallel

HALDB Offline Reorganizations

- IMS product utilities
 - HD Unload and HD Reload may be used
- IMS Tools
 - HP Unload and HP Load may be used
 - IMS Parallel Reorganization may be used (Renamed: IMS Database Reorganization Expert)
 - Index Builder may be used
 - Eliminates the need to heal pointers after the reorganization
 - Performance
 - The IMS Tools further shorten the reorg process

Online - Almost

Database is available during almost all of the reorganization

Online Reorganization Facility (ORF)

- Online Reorganization Facility (ORF) is an IMS tool
 - Reorganizes full function databases, including HALDB
 - Allows several types of restructures

Technique

- Uses shadow data sets (reorganizes and renames them)

Availability

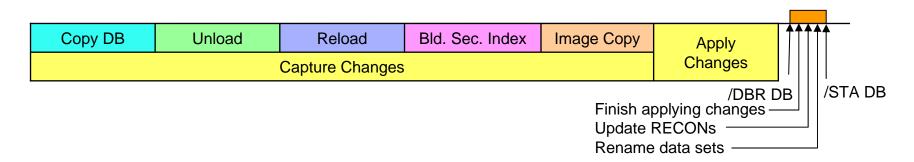
- Allows concurrent updates from IMS online systems
- A very short outage is required

Restrictions

- No external logical relationships
- Concurrent batch (DLI or DBB) not allowed

Online Reorganization Facility (ORF) ...

- Allows several types of restructures
 - Can convert non-HALDB to HALDB
 - Can modify HALDB partitioning
 - Can make many changes to DBD (add segments, modify segments,...)
- BMPs and message regions do not have to be quiesced
 - Special processing during the switch of data sets
 - BMPs "fail" after the next sync point
 - They are restarted after ORF completes
 - No operator action
 - Message regions are "held" after next sync point



Online Reorganization Facility (ORF) ...

Reorganization process with ORF

- Database is copied
- Copy is reorganized
- Updates to production database are captured
- Captured updates are applied to the copy at the end of the reorganization
- Production database is "/DBRed"
 - RECONs are updated
 - Names of data sets are changed
- Production database is "/STARTed"

= Database Outage

Online - Truly

Database is available during all of the reorganization

TEM

HALDB Online Reorganization

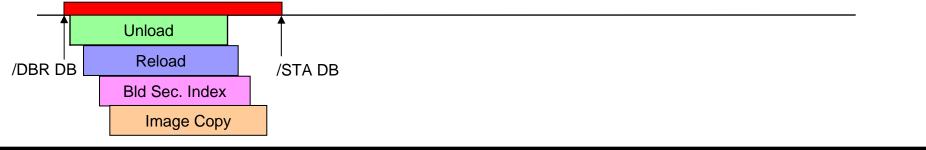
- HALDB Online Reorganization
 - Standard part of IMS
- Absolutely no outages
- Reorganizes partition into a new set of data sets
- Supports:
 - Secondary indexes, logical relationships, data sharing, ...
- Changes allowed:
 - Data set sizes may be changed
 - Recovery from an out-of-space abend (U0844) without a database outage!
 - Data set placement may be changed
 - Restrictions
 - Cannot make DBD changes
 - Cannot make partition selection changes
- IMS 11 makes significant performance improvements
 - Reduces logging, reduces CPU and shortens elapsed time

TBM

Fast Path DEDB Reorganizations


- Fast Path Data Entry Database (DEDB)
 - Database is architected for online reorganizations
 - Designed to facilitate online reorganization
 - IMS product includes online reorganization capability
 - High-Speed DEDB Direct Reorganization utility
 - Absolutely no outage
 - Reorganizes area (partition) in the same data set
 - Reads and rewrites segments within units of work (sets of CIs)
 - Supports concurrent updates
 - Supports data sharing
 - Restriction:
 - Restructures not allowed

IBM


Comparison of Reorgs

Standard Offline Reorg Process

Offline Reorg Process using Parallel Reorg (Renamed: IMS Database Reorganization Expert)

Reorg Process using ORF

Copy DB	Unload	Reload	Bld Sec. Index	Image Copy	Apply	1 í	
Capture Changes			Changes				
					/DBR DI	B,	'STA E

True Online Reorg Process

Reorganizations Summary

- Full function non-HALDB
 - IMS tools can significantly reduce outage time
 - ORF tool reduces outage to a very short time
 - Conversion to HALDB may provide significant benefits
- HALDB
 - Partitioning and self-healing pointers significantly reduce offline reorganization times
 - IMS tools can significantly reduce outage time for offline reorgs
 - IMS HALDB Online Reorganization has no outage
 - Part of the IMS product
- Fast Path DEDB
 - Real online reorganization with no outage
 - Part of the IMS product

Reorganizations Summary

- Database restructuring considerations
 - HALDB OLR has very limited restructuring capability
 - Only allows changes of data set properties
 - Fast Path High Speed Direct Reorg does not allow restructuring
 - ORF allows many types of restructuring
 - Some restructuring requires offline process
 - Applications may not tolerate online restructuring
 - Can they handle two forms of the data simultaneously?

Image Copies

Image Copies

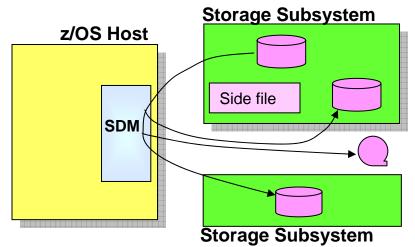
- Clean IC vs. Fuzzy IC
 - Clean IC
 - All segment images are from the same time
 - Recovery may be done without logs
 - Database is not available for update for some time
 - Fuzzy IC
 - Segment images are from different times
 - Recovery requires logs
 - Database is available for update during the IC process

Copy Technologies

- Standard copy
 - z/OS reads and writes each block
 - Clean copy does not allow any updates before the copy completes

Concurrent copy

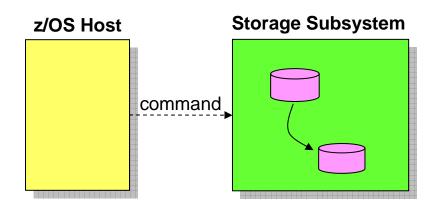
- Logical copy is very short
 - Updates are not allowed during the logical copy
- Physical copy is done by z/OS System Data Mover
 - Updates are allowed during the physical copy
 - Uses z/OS resources


Flash copy

- Copy time is very short
- Copy is done entirely by the storage subsystem
 - No z/OS resources are used to copy the data sets

Concurrent Copy

- Concurrent Copy uses storage subsystem and the System Data Mover (SDM)
 - Copy may be to another subsystem, including tape or disk
 - Two phase copy
 - Logical copy sets up side file for updates during physical copy (very quick)
 - Updates are not allowed
 - Physical copy writes data using SDM and host resources
 - Updates are allowed



FlashCopy

FlashCopy is a storage subsystem capability to copy volumes or data sets

- Copy is created in the same subsystem
- Copy is in same format (identical copy)
- Almost instantaneous
 - Done be creating another "map" to the data
- Subsequent updates are written to different locations for the two data sets or volumes
 - New and old "maps" are used

Image Copies

- IMS product provides four image copy utilities
 - Image Copy
 - Image Copy 2
 - Online Image copy
 - Fast Path DEDB HSSP image copy
- IMS tools
 - High Performance Image Copy (HPIC)

TEM

Image Copies in IMS Product

- Database Image Copy (DFSUDMP0)
 - Clean and fuzzy image copies
 - Fuzzy IC not valid for KSDSs
 - KSDS: (S)HISAM, HIDAM indexes and secondary indexes
 - Output is in "image copy" format

Database Image Copy 2 (DFSUDMT0)

- Can use concurrent copy capability of the storage subsystem
 - Creates output in "dump" format
- Can use FlashCopy capability of the storage subsystem
- Clean and fuzzy image copies
 - Valid for all types of data sets: OSAM, ESDS, and KSDS
 - Outage for clean copies is much shorter
 - Database unavailable only during the logical copy for concurrent copy or "equivalent" copy time for FlashCopy

TEM

Image Copies in IMS Product

- Online Database Image Copy (DFSUICP0)
 - Runs in online system special BMP
 - Uses online buffer pools performance implications
 - Does not support Fast Path databases
 - Valid for all data set types: OSAM, ESDS, KSDS
 - Output is in "image copy" format
 - Fuzzy image copies
 - Updates allowed only in the same online system
 - Limited data sharing support

Image Copies in IMS Product

- Fast Path DEDB High-Speed Sequential Processing (HSSP)
 - Fast Path DEDBs only
 - HSSP is an option for BMP application programs
 - High speed process to read the database
 - Anticipatory reads eliminate many read waits
 - HSSP has an image copy option
 - Produces an image copy while application processes the area
 - Fuzzy image copy
 - Concurrent updates are allowed in any data sharing system

Image Copy Tool

High Performance Image Copy (HPIC)

- Includes Concurrent Copy, FlashCopy, and SnapShot support
 - Concurrent Copy
 - Can make fuzzy image copies of all data sets, including KSDSs
 - KSDS image copies are not identical copies (they have header records, etc.)
 - FlashCopy and SnapShot Copy
 - Can make fuzzy image copies of data sets except KSDSs
 - Faster copies of database data sets

Image Copies Summary

- Clean image copies
 - Available with
 - Image Copy, Image Copy 2, and HPIC
 - Image Copy 2 and HPIC can minimize the outage

Fuzzy image copies

- Available for OSAM and ESDSs with
 - Image Copy, Image Copy 2, and HPIC
- Available for KSDSs with
 - Image Copy 2 and HPIC
- Available for DEDBs with
 - Image Copy, Image Copy 2, HSSP, and HPIC

Database Recoveries

Database Recoveries

- Database recoveries are done for three reasons
 - Full recovery
 - Due to DASD failure
 - Puts database back to its last state
 - RAID technology has eliminated the need for most of these
 - Timestamp recovery (to a previous state)
 - Usually due to an application processing error
 - Related databases must be recovered to the same time
 - Database must be recovered to a *recovery point*
 - Time when there were no uncommitted updates
 - No transactions in-flight
 - Exception for DRF
 - Disaster recovery
 - May be either full recovery or timestamp recovery
 - Most recoveries today are timestamp recoveries

Database Recoveries

Preparing for timestamp recoveries

- Creating recovery points
 - Database must be quiesced
 - Typically done with /DBR command
 - For data sharing, database must be quiesced on all systems at the same time
 - DBRC enforces these rules
 - Database data set cannot have an ALLOC record which spans the time
 - IMS 11 contains a database quiesce function
 - Eliminates the need to /DBR the databases

- Creating recovery points is a significant cause of database unavailability

- Many installations /DBR their databases once every day for this purpose
- Outages are not caused by failures
 - They are caused to prepare for potential failures

- IMS 11 database quiesce
 - Created with UPD DB|AREA|DATAGRP ... START(QUIESCE) command
 - Databases, areas and partition data sets are not closed and deallocated
 - Transactions and BMPs which access the databases do not have to be terminated
 - All uncommitted updates must be committed
 - After the commits, no updates are allowed until all other transactions and BMPs have committed their updates
 - Quiesce point is reached
 - Eliminates an "outage" and replaces it with a "delay"
 - During an "outage" applications fail if they attempt to access the database
 - Typically several minutes
 - During a "delay" applications wait for the database to become available
 - Typically a few seconds

- Eliminating recovery points
 - Database Recovery Facility (DRF) tool
 - Has Point-in-Time-Recovery (PITR) capability
 - Recovers databases to <u>any time</u>
 - Does not require a recovery point
 - Recovers only committed updates
 - Could recover to a DB2 determined time
 - Eliminates the need to create recovery points
 - Databases may remain available
 - Daily /DBRs or IMS 11 quiesces are not needed

- Database Recovery Facility (DRF) tool
 - Fast recovery capability
 - Recovery multiple database data sets in parallel
 - Reads inputs only once for multiple recoveries
 - Reads input logs in parallel
 - Reads image copies in parallel
 - Reads change accum data sets in parallel
 - Writes data sets sequentially after sorting log record updates
 - DRF provides a faster way to recover

- High Performance Change Accumulation (HPCA) tool
 - HPCA provides a faster way to create Change Accum data sets

Index Builder tool

- Creates or rebuilds indexes from indexed databases
 - Eliminates need for image copies and logs
- Faster than database recovery for these indexes

Database Recoveries Summary

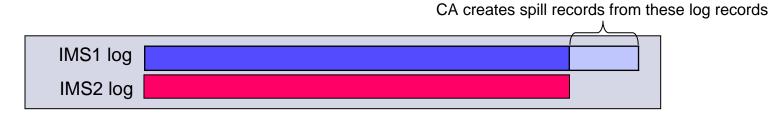
- Most outages are used to create recovery points
 - Outage may be converted to a 'delay' with IMS 11 DB quiesce
 - Outage may be eliminated with DRF
- Actual recoveries may be shortened with tools
 - DRF
 - HPCA
 - Index Builder

- Common techniques
 - Send clean copies to DR site
 - Send fuzzy image copies, logs, RECONs, etc. to DR site
 - Mirroring

- Send clean copies to DR site
 - Create common recovery point for all IMS databases
 - Probably requires common recovery point time with other data

- DB2, VSAM, etc.
- Regular outages to create clean copies
- Substantial data loss
 - Typically up to a full day
- Easy to recover at the DR site
 - Just restore the image copies

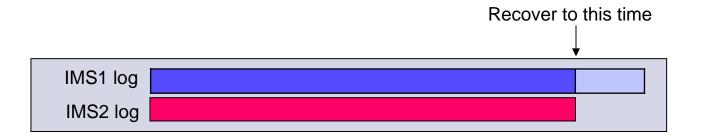
- Send fuzzy image copies, logs, RECONs, etc. to DR site
 - Data is recovered to the end of the last log at the DR site
 - Less data loss than the "clean image copy" technique
 - Does not require outage if not data sharing 1
 - Recovery points are not used
 - Cannot be used with data sharing
 - More complex recovery at the DR site
 - 1 Fix up RECONs


- OR (
- Full database recoveries
- Emergency restart from last log

- Fix up RECONs
- Timestamp recoveries with DRF
- Cold start IMS
- May be difficult or easy to coordinate with other data
 - DB2, VSAM, etc.
 - Technique (1) recovers data to the "end" of the last IMS log
 - Technique (2) recovers to any time up to the "end" of the last IMS log

Disaster Recoveries with Data Sharing

- Timestamp recoveries without DRF require recovery points
 - Without IMS 11 database quiesce:
 - Concurrent outage required in all sharing systems
 - May extend outage for creating recovery points
 - With IMS 11 database quiesce:
 - Quiesce is coordinated across the IMSplex
- Full recoveries cannot be done
 - Logs from different systems have different end times
 - They cannot be merged with Change Accumulation
 - CA creates 'spill records' when one log extends past others



Disaster Recoveries with Data Sharing

Timestamp recoveries with DRF

- Does not require recovery point
- May be done with fuzzy image copies
- Benefits from parallel processing
- May be done to any time for which all logs are available at remote site

- Mirroring
 - All databases and system data sets are mirrored
 - No outages for image copies
 - Easy
 - No recoveries at DR site
 - Works with data sharing
 - Almost no data loss 1
 - Works with other subsystems too! 1
 - All data is recovered to the same time
 - DB2, VSAM, ...

- Mirroring resolves data sharing issues
 - Data at remote site matches production site at a recent time
 - Updates from all systems are reflected at the DR site
 - Eliminates need for recoveries

Application DB Copies

Application Database Copies

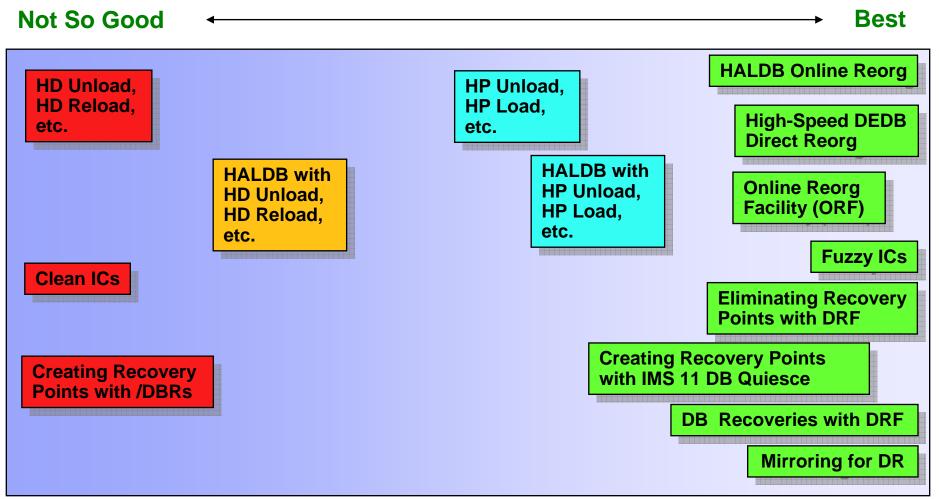
- Some installations copy databases from production to another system
 - Other system processes the data as it exists at the time of the copy
 - Could be 'end of day' data

Typical technique

- Image copy and restore
 - Using any utilities or tools
- FlashCopy for application database copies
 - Minimal outage for clean copy
 - One step
 - Copy is the same format as the original database

Application Database Copies

- IBM IMS Cloning Tool uses FlashCopy or other storage system facility
 - FlashCopy (IBM,EMC,HDS), TimeFinder/Snap(EMC), SnapShot (IBM,STK), DFSMSdss or FDR
 - Tool
 - Verifies that ACBLIB definitions in source and target are compatible
 - /DBRs source DBs
 - Copies databases
 - /STARTs source DBs
 - Adjusts RECON information in target
 - DELETE.DB to delete recovery information
 - INIT.DB, INIT.DBDS, INIT.PART and INIT.AREA to register/define databases



Summary

Maximizing Database Availability

Practices to minimize database outages

